
AA

Lfl

-TR-206

- 2

PERFORMANCE ANALYSIS OF SIGNAL PROCESSING AND

TRACKING SYSTEMS FOR AIRBORNE ACOUSTIC ASW

FINAL REPORT

*[

LYE IC

-AUG 2O 184

C:) A

_ T his document, has bencipoved

for public release and sale; its

-- fA distribution is unlimited.

I ALPHATECH,
2 BURLINGTON EXECUTIVE CENTER IN-- III MIDDLESEX TURNPIKE C .J'

BURLINGTON, MA 01803
617-273-3388

84 08 09 003



ALPHATECH, INC.

KD

D

TR-206

PERFORMANCE ANALYSIS OF SIGNAL PROCESSING AND
TRACKING SYSTEMS FOR AIRBORNE ACOUSTIC ASW

FINAL REPORT

p

By

Dr. R.B. Washburn
Dr. D. Teneketzis b

Dr. A.S. Willsky

July 1984 .

Auo 0 2 0 19 4

Submitted to:

Dr. Thomas Ballard
Naval Surface Weapons Center

White Oak Laboratory

Silver Springs, MD 20910 - ,

ALPHATECH Inc.
2 Burlington Executive Center

III Middlesex Turnpike
Burlington, Massachusetts 01803

(617) 273-3388

-- - --

I-



I

UNCLASSIFIED j
SECURITY CLASSIFICATION OF THIS PAGE (37tle Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (aid Subtitle) '. TYPE OF REPORT & PERIOD COVERED

Performance Analysis of Signal Processing and Final 30 May 1983-
Tracking Systems for Airborne Acoustic ASW 30 June 1984

4. PERFORMING ORG. REPORT NUMBER

TR-206
7. AUTHOR(#) S. CONTRACT OR GRANT NUMBER(&)

R. B. Washburn N60921-83-C-0131
D. Teneketzis
A. S. Willsky

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

ALPHATECH, INC. 61153N WRO411Ill Middlesex Turnpike WROl41lOl U34AA

Burlington, Massachusetts 01803
1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Surface Weapons Center July 1984
White Oak, Code U22 t3. NUMBER OF PAGES

Silver Spring, MD 20910 135
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling OffIce) IS. SECURITY CLASS. (of thts report)

Naval Surface Weapons Center
White Oak, Code U22 Unclassified
Silver Spring, MD 20910 15m. OECLASSIFICATION/DOWNGRADING

SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited.

I. DISTRIBUTION STATEMENT (of the abestract enteted In Block 20, I
t 
different from Report)

IS. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on revers. e tmi, necessary and Identify by block number)

Tracking
Rate Distortion
Acoustic
Cramer-Rao

20. ABSTRACT (Continue on ,everse side It necessay and tdentify by block number)

JMethods were investigated for predicting optimal mean square estimation error
in nonlinear estimation problems associated with passive acoustic tracking.
The objective was to develop performance prediction methods that are compu-
tationally efficient, applicable to realistic passive tracking models, and
accurate. Previous work extended Cramer-Rao methods to obtain a method that was
computationally efficient and applicable to a large class of realistic mathe-
matical models. The present work reported here applied this method to study"

DO r 1473 EDITION OF INOV SS ISOUSOLrrE UNCLASSIFIED
S 'N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Wten Data Entered)



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fMhIM DO g3ntred

the effect of an uncertain, unstable source frequency and the effect of a
broadband source signal on passive tracking using omnidirectional ard,
directional sonobuoys. In addition, the report describes work on developing
performance prediction methods that are more accurate than Cramer-Rao methods
in low signal-to-noise ratio cases. The method used is based on rate dis-
tortion theory./

S,N 0102- LF. 014- 6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whn Dae Entlwe

L____



[. ,- .

ALPHATECH, INC.

I

ABSTRACT

VThe research described in this report has investigated methods for pre-

dicting optimal mean square estimation error in nonlinear estimation problems

associated with passive acoustic tracking. The objective was to develop per-

formance prediction methods that are computationally efficient, applicable

to realistic passive tracking models, and accurate. Previous work extended

Cramer-Rao methods to obtain a method that was computationally efficient and

1U applicable to a large class of realistic mathematical models. The present

work reported here applies this method to study the effect of an uncertain,

unstable source frequency and the effect of a broadband source signal on pas-

sive tracking using omnidirectional and directional sonobuoys.

In addition, the report describes work on developing performance predic-

tion methods that are more accurate than Cramer-Rao methods in low signal-to-

SL noise ratio cases. One method is based on rate distortion theory and shows

great promise. This method requires no simulation, it is analytically and

efficiently computable for a large class of static nonlinear problems, and it

is better than the Cramer-Rao method when signal-to-noise ratio is low. The

work reported here also investigated a numerical method of performance pre-

diction based on classical ambiguity analysis. This investigation obtained

bounds on the error between the numerical prediction and the exact mean square

error as a function of the size of the numerical computation.
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SECTION 1

INTRODUCTION

1.1 INTRODUCTION

The operational deployment and mission objective of airborne acoustic sur-

veillance (passive sonobuoys monitored by aircraft) create a special acoustic

environment and restrict the information processing capabilities in respects

which differ from other passive acoustic surveillance methods (towed arrays,

hull-mounted arrays, bottom-anchored arrays). But the currently operational

and planned next generation of airborne signal processing systems have an

architecture similar to other passive acoustic systems. That is, the proces-

S5s sing system consists of (1) a "front-end" which performs spectral analysis of

the raw signal from each sonobuoy to extract frequency and bearing informa-

tion about the target and (2) a "back-end" which uses the front-end output to

m detect, locate, or track the target. Much work has been done on improving the

design of the individual modules, but there appears to have been little work

on evaluating and designing the overall signal processing-tracking system.

The research described in this report addresses the problem of evaluating

the potential performance that might be achieved by improving the design of

the overall signal processing and tracking system. Specifically, our research

problem is to develop mathematical methods and numerical algorithms to estimate

the optimal tracking performance possible with given mathematical-physical

models of acoustic signals and sensors. Our objective has been to develop

1-l
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performance prediction methods that are computationally efficient, applicable

to realistic passive tracking models, and accurate. In our previous work [1]*

Iwe developed a Cramer-Rao method to obtain a method that was computationally

efficient and applicable to a large class of mathematical models. In Section

2 of this report we have shown that this method is easy to apply to more

! - realistic models than the ones used in [1]. Specifically, we have used the

method to study the effect of uncertain, unstable source frequency and the

effect of the presence of a broadband source component on tracking accuracy.

In some nonlinear estimation problems of low signal-to-noise ratio,

Cramer-Rao methods may predict performance much better than the optimal pro-

cessing algorithm can actually achieve. This disadvant; f Cramer-Rao meth-

r- ods motivated us to investigate performance prediction methods which would be

more accurate when the signal-to-noise ratio was low, but which are still

efficiently computable for a large class of realistic models. Sections 3 and

4 focused on this problem.

Section 3 investigated an analytical (i.e., not requiring simulation)

method based on rate distortion theory [4]. This method shows great promise

U because it is efficient to compute for a large class of nonlinear problems

and it is better than the Cramer-Rao method when signal-to-noise ratio is low.

However, the method requires further development to make it applicable to

realistic dynamic problems.

Section 5 investigated a numerical method of performance prediction often

described as ambiguity analysis [71,[151. This method is essentially based

on numerical computations rather than on analytical formulas. The method can

*References are indicated by numbers in square brackets, the list appears at

the end of the main body of this report.

1-2
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give an accurate performance prediction provided sufficient computational

resources are available. Our investigation studied the relationship between

5prediction accuracy and computational complexity for this method. Further

work remains to determine the precise effect of signal-to-noise ratio on the

relationship between prediction accuracy and computational complexity.

* In the remainder of this section we present a summary of the research

detailed in Sections 2, 3, and 4.

1.2 CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY UNCERTAINTY
AND BROADBAND SIGNALS

In our previous work [I] we refined available Cramer-Rao performance

analysis methods to exploit special features of the airborne acoustic signal

processing and tracking problem. In particular, it was possible to obtain

an efficient, recursive computation, and to avoid completely Monte-Carlo sim-

ulation despite the presence of nonlinear measurements. A finite dimensional

stochastic differential equation 12] was used to model a constant velocity

target radiating acoustic signals to passive omnidirectional and directional

sonobuoys. In [1] we found that such models of airborne acoustic tracking

& problems have the following structural property: all nonlinearties of the

state equations are functions only of the source kinematic states (position

and velocity). The other state variables, modeling such quantities as source

frequencies, broadband component, received signal phase, etc. occur linearly

in the state equations. Because of this structure of the mathematical model,

we were able to derive an efficient Cramer-Rao type lower bound that treats

the source kinematic variables as unknown parameters and all other state

variables as random, normally distributed parameters.

1-3
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In the work of Section 2 we have illustrated further the utility of

this approach by analyzing two effects not studied in [1): the effect of an

initially uncertain and randomly unstable source frequency, and the effect

of a broadband component of the source frequency. The random frequency was

parameterized by two variables, initial root-mean-square uncertainty and rate

of variation. The rate of variation (studied for .01 to 1.0 Hz/min) appeared

to have negligible effect on both position and velocity tracking error.

Initial uncertainty had little effect on position tracking error, but it did

have a significant effect on velocity tracking error. When the initial source

frequency uncertainty reaches 1 Hz, the initial velocity tracking error is

not substantially reduced until the source passes through the sonobuoy field.

This indicates that initial uncertainty concerning source frequency can make

the velocity tracking performance sensitive to source-sensor geometry (i.e.,

good velocity tracking will depend more crucially on good geometry).

The broadband source component was modeled as a simple stationary first-

order Markov process. The bandwidth of this process was fixed at 200 Hz

and the ratio of broadband to narrowband power was varied from 10- 5 to 104 .

*I Increasing this ratio increases the total source power, and the position and

velocity tracking error decrease as a consequence. The decrease in tracking

error is comparable to the decrease in error with increased narrowband source

signal power studied in [1]. This indicates that broadband source energy is

comparable in value to narrowband source energy, and that the broadband com-

ponent of the source signal can be profitably exploited by an acoustic signal

processing system.

Many other realistic models can be analyzed using the methods of Section

2. However, before analyzing the performance of other realistic models of

1-4
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passive acoustic tracking problems, we need to determine the degree of opti-

mism inherent in the performance prediction of Section 2. Sections 3 and 4

present one approach to doing this, namely by trying to develop more accurate

performance predictions with which to compare the methods of Section 2. It

is also desirable to compare these performance predictions to the performance

of actual algorithms. The methods of Section 2 suggest a processing algorithm

architecture that might realize the performance prediction in some cases (see

[11 for discussion).

1.3 RATE DISTORTION PERFORMANCE ANALYSIS

Communication theory provides a useful interpretation of tracking prob-

lems different from the more conventional statistical estimation theory point

of view. Messages are generated by a source and coded by an encoder. The

encoded messages are transmitted through a channel, decoded by a decoder, and

received by a user. In communication problems the source, channel, and user

are specified, and the problem is to design encoder and decoder so that mes-

sages received by the user are accurate reproductions of the messages gener-

ated by the source.

One can interpret a tracking system as a type of communication system in

the following way. In this interpretation the message generated by the source

is a set of target parameters (e.g., positions and velocities at a given

time). The encoder for passive tracking problems does nothing to code the

source message. In active tracking we can control the encoder to some extent

(e.g., increase signal strength). The encoder and channel for the tracking

problem represent the transformation between target parameters and sensor

outputs. One might also include preprocessing of sensor outputs as part of

*the channel if that preprocessing is already specified. Finally, the decoder

1-5
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for the tracking problem is the tracking algorithm which provides estimates

of target parameters to a user. In tracking problems the source (target

model), encoder and channel (measurement model), and user are specified, and

the problem is to design a decoder (tracking algorithm) so that estimates

received by the user are accurate reproductions of the parameters generated

m by the source.

The communication theory viewpoint is useful because it allows us to

apply to the tracking problem techniques of information theory which do not

exist in statistical estimation theory. The techniques relevant to tracking

performance analysis involve rate distortion theory [4] first developed by

Shannon [51,[6]. Distortion is a measure of the average error between the

message generated by the source and the decoded message received by the user.

In a tracking problem it could be the mean square error in the tracking algo-

rithm's target parameter estimation.

U KUsing rate distortion techniques and some simple extensions of them in

Section 3, we showed how to compute analytically rate distortion lower bounds

of mean square error for static nonlinear estimation problems with additive

n Gaussian noise. Specifically, we obtained a lower bound of the mean square

estimation error for any specified component of the state vector. We showed

that the rate distortion bound is asymptotically tighter than the Cramer-Rao

bound in the limit of low signal-to-noise ratio.

Based on present results, the rate distortion bound offers a better

approximation of mean square performance in the high measurement noise regime

than the Cramer-Rao bound. Furthermore, the rate distortion bound requires

little, if any, more computation than the Cramer-Rao bound. Thus, the rate

distortion bound appears to complement the Cramer-Rao method in the nonlinear,

1-6
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high noise regime where the latter bound is known to give overly optimistic

approximations of the true mean square error. However, in order to make the

rate distortion theory useful for the dynamic nonlinear estimation problems

of tracking, we must develop our current results in two significant ways:

1. it is necessary to obtain a simple rate distortion bound in

the case of a vector state and a general vector measurement;

2. it is necessary to derive a recursively computable bound for
dynamic estimation problems.

Other directions for further investigation exist beside these two neces-

sary extensions. One direction would extend the bounds to problems for which

the state is an unknown, non-random parameter (or a mixture of random and non-

random parameters). In [11 we found that a large class of tracking problems

can be modeled by a state process which consists of an unknown deterministic

component and an unknown, Gaussian distributed random component. Rate distor-

tion theory for nonstatistical sources (c - entropy methods [4]) may allow us

to derive such results.

Another direction is to study the effect of architecture constraints,

such as preprocessing of measurements, on tracking estimation performance.

* We investigated this problem in [I] using Cramer-Rao methods. A rate distor-

tion approach, based as it is on information theory, would provide a more

general, more accurate method of analyzing architectural constraints.

1.4 AMBIGUITY PERFORMANCE ANALYSIS

Ambiguity analysis (171,[151 Chapter 10) is an attempt to understand the

global nature of a parameter estimation problem. This is in contrast to Cramer-

Rao methods which provide a more local analysis of estimation performance.

The Cramer-Rao lower bound on mean square estimation error will be an accurate

1-7
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estimate of true optimal performance provided that it is possible to acquire

or maintain an estimate near the unknown parameter at all. The local problem

(addressed by the Cramer-Rao method) is to analyze accuracy given acquisition;

the global problem (addressed by ambiguity analysis) is to analyze the acqui-

sition performance.

t. The ambiguity method approximates the mean square error of the maximum

likelihood estimator by forming a weighted sum of the Cramer-Rao lower bound

with a finite number of discrete errors. The weights are probabilities asso-

ciated with the finite hypothesis testing problem of choosing one of a finite

number of regions in the parameter space. The regions were selected so that

one large region (proportional to N-1/ 2 in size) contained the true parameter.

The rest of parameter space was divided into smaller regions (proportional to

N-1 in size). We showed that this method is different from the exact mean

square error by a term proportional to N- 1. Thus, the method converges to

the exact mean square error as the number of regions increases, and the error

of the approximation is inversely proportional to the number of regions.

Further work is required to determine how the magnitude of the measure-

L ment noise (or equivalently, the signal-to-noise ratio) enters into the

approximation error. This result will clarify how large the number of regions

needs to be for a given signal-to-noise ratio. The convergence analysis also

needs to be extended to the general case of vector states and measurements

and to the case where a measurement process is observed. The order of the

approximation error is expected to remain the same in these generalizations

but a more precise idea of the size of this error would help us understand

the computational feasibility of applying the ambiguity analysis method to

analyze the performance of complex estimation problems.

1-8
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SECTION 2

CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY

INSTABILITY AND BROADBAND SIGNALS
m

2.1 INTRODUCTION

In our previous work [1] we refined available Cramer-Rao performance

analysis methods to exploit special features of the airborne acoustic signal

processing and tracking problem. In particular, it was possible to obtain an

efficient, recursive computation, and to avoid completely Monte-Carlo approx-

imation despite the presence of nonlinear measurements. In this section we

illustrate further the utility of this approach by analyzing the effects of

unstable and unknown source frequency and of broadband source signals on the

K predicted optimal tracking performance. We describe the mathematical model

we have used in subsection 2.2. Subsection 2.3 presents the results of nu-

merical runs and subsection 2.4 presents conclusions based on these results.

2.2 MATHEMATICAL MODEL WITH FREQUENCY INSTABILITY AND BROADBAND SOURCE

A finite dimensional stochastic differential equation [2] was used to

model a constant velocity target radiating direct path acoustic signals to

passive omnidirectional and directional sonobuoys. This model has the gen-

eral form

dx = f(x)dt + G dw (2-1)

dy = h(x)dt + dv (2-2)

2-1
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where x is the finite dimensional state vector and y is the finite dimensional

vector of measurements. The state noise and measurement noise were assumed

to be independent Gaussian white noise processes. Note that f and h were non-

linear functions of x and G was a constant matrix.

The state vector x used in the model consisted of the following components.

I

x 1

+
X2

vi

+

x (2-3)

Nb
f

L s1

SNbl

In Eq. 2-3 the expressions x1 , x 2 denote the two orthogonal components of the

position of the target relative to some fixed position (the origin at 0,0).

The expressions vi, v2 similarly denote the components of the target velocity.

2-2
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The expression *k denotes the phase of the narrowband component of the received

acoustic signal at buoy number k. Similarly, sk denotes the broadbard compo-

nent of the received acoustic signal. The expression f denotes the transmitted

source frequency. There are N total sonobuoys.

The measurement vector y consisted of the following components.

I-
Y!

Y2.

y (2-4) --

y
Nb

where for each k the expression yk denotes either

Yk Yk,om (2-5)

if sonobuoy k is an omnidirectional buoy, and

Y, om

k j k,d1 (2-6) - -

Yk,d2

if sonobuoy k is a directional buoy. In any case k,om denotes the omnidi-

rectional channel signal and y , y denote the two directional channelYk,dl Yk,d2

signals.

The target model assumed constant velocity motion, namely

2-3
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dx1 =v I d

* +
dx = v dt

dx 2 2 (2-7)

dv1 = 0

dv2 =0

Note that Eq. 2-7 contains no driving noise on the right-hand side. This

was important in developing an efficient method to compute performance as de-

scribed in [1]. The initial position components x (0), x (0) and the initial
1 2

velocity components v1(0), v2(0) were treated as unknown parameters rather

than as random variables. This is in contrast to the treatment of f, Ok and

sk as random parameters.

The acoustic signal radiated by the target was assumed to consist of

two parts: a narrowband component and a broadband component. The narrowband

£ component was modeled as follows. The source frequency f satisfied the sto-

chastic differential equation

df f- f(f - T)dt + dwf (2-8)

where af > 0, f and the variance 0f
2 associated with wf were known constants.

The initial variance of f(O) was assumed to be the steady state variance

given by

2
(f(O) - --- ))2 = - (2-9)

2af

where the overbars (-) denote mathematical expectations. The physical

meaning of Eq. 2-8 is that the source frequency f(t) at time t is an unknown

random variable that varies randomly about the constant nominal value f

2-4
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(f = 100 Hz in our numerical examples). Note that the average variation of

f per time constant is of order

Of • . (2-10)

That is, Eq. 2-10 gives the average speed of variation of the source frequency

PO (it has units Hz/min in our numerical examples).

The source frequency f is Doppler-shifted and drives a random phase equa-

tion given by

dk =f (1 I+ ' (+I - zk,l) + v2 * (+2 Zk,2) - t=~ f I .. . . . dt

c( - Zk l) 2 + (x 2 - zk2) 2

+ dw¢, k  (2-11)

In Eq. 2-11 z and z denote the coordinates of the position of sonobuoyk,1 k,2

£ K k, and c is the assumed constant speed of sound. The noise processes wek

were assumed to have the same variance, o2, associated with all of them. The

model also allowed the possibility of correlation between wok and wo,j for

k * J. A constant correlation coefficient p (0 r p ( 1) was assumed for all

such cases.

The physical interpretation of Eq. 2-11 is obtained as follows. Consider

a signal y(t) with phase 4k(t), specifically

y(t) = sin 4k(t) (2-12)

If one assumes that the phase is initially unknown (i.e., distributed uniformly

over 360 degrees), then y(t) is a wide sense stationary process [31 with total

power 1/2 and two-sided power spectral density at frequency w given by

2-5
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o,2+ f 2 + W2
0 2  4 D
- • (2-13)

4 + (f - ) + + ) ]

This result assumes that the Doppler-shifted frequency is fixed or varies

I * slowly relative to the phase variation. The expression in Eq. 2-13 represents

a spectrum with peak at frequency fD and width of order a02 .

The broadband component of the received signal is modeled by the sto-

chastic differential equation

dsk = - s sk dt + dws,k (2-14)

!P [ where as > 0 and the variance as2 associated with ws, k are known constants.

The signal sk(t) is a stationary process with two-sided power spectral density

at frequency w given by

ii
2 + w2) (2-15)

total power os2/2as and bandwidth of order as.

The processes *k and sk are combined to form the received signal process

as follows. The omnidirectional channel process Yk,om satisfies the equation

dYk,om = (sk + A sin 0k)dt + dvk,om (2-16)

where the constant A and the variance ok,om 2 associated with vk,om are assumed

known. Note that the total power of the narrowband component of yk,om is A 2/2

compared to the broadband component power Os2/2as and the noise component

power spectral density Gk,om 2/2ir (the white noise dvk,om has infinite total

power of course).

2-6
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The directional channel signals yk,dl and ykd2 satisfy similar equations

given by the following.

- zk-ld

dyk,dl = (sk + A sin k )  1/2-z  dt + dv kz]/

x; - -1)2  +  (x - z ,) 2

(2-17)

dYk,d2 (sk + A sin k . dt + dvkd 2

- zl)2 + (x2 - k 2 )2]

(X k, ( z,2)

[ (2-18)

2.3 NUMERICAL EXAMPLES

This section describes the numerical examples we computed to study the

i I effects of unknown, unstable source frequency and the effects of a broadband

source signal on predicted optimal tracking performance. Tracking performance

was measured by the root-mean-square (rms) errors in position and in velocity

I I versus time after initial contact. The target-sensor geometry assumed in each

example is shown in Fig. 2-1; nominal test parameters are shown in Table 2-1.

Note that the measurement noise for omnidirectional channels was chosen so

_ that a single directional buoy within 5 kft of the source could determine

source frequency to within .2 Hz and bearing to within 4 degrees based on 1

minute worth of raw data. Figures 2-2 and 2-3 show respectively the position

and velocity tracking performance for the nominal test parameters. Note that

the rms error is plotted on a logarithmic scale in these figures.
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DIFAR

A
I D 15 kft / \ 15 kft

m p

INITIAL TARGET /5 kft FINAL
CONTACT TRAJECTORY L - - - CONTACT

OMNI 1 OMNI 2

Figure 2-1. Target Sensor Geometry

TABLE 2-I. NOMINAL TEST PARAMETER VALUES

TARGET

Initial x position -15 kft
Initial y position 0 kft
Initial x velocity 1.2 kft/min (approx. 10 kt)
Initial y velocity 0 kft/min
Initial position uncertainty 30 kft
Initial velocity uncertainty 1.5 kft/min
Total time of contact 25 min

SOURCE SIGNAL

Narrowband center frequency 100 Hz
* Initial uncertainty of frequency .01 Hz

Frequency variation rate .01 Hz/mmn
Narrowband component line width .1 Hz
Broadband bandwidth 200 Hz
Broadband:narrowband power ratio 10- 5

SENSOR

Number of directional buoys I
Number of omnidirectional buoys 2
Interbuoy distance 5 kft
Buoy phase correlation coefficient 0
Omnidirectional channel noise .11
Directional channel noise .03

2-8
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Table 2-2 shows the cases computed to study the effects of frequency

uncertainty and frequency instability. As shown in Table 2-2, two parameters

5 measuring initial source frequency uncertainty (given by Eq. 2-9) and average

rate of variation (given by Eq. 2-10) were varied independently. The effect

on tracking position error is shown in Figs. 2-4 through 2-15; the effect on

0 tracking velocity error is shown in Figs. 2-16 through 2-27.

Table 2-3 shows the cases computed to study the effect of a broadband

source component. One parameter, the ratio of total broadband to total

narrowband power, was varied. This ratio is given by

Os 2
r(2-19)

The effect on tracking position error is shown in Figs. 2-28 through 2-32;

the effect on tracking velocity error is shown in Figs. 2-33 through 2-37.

2.4 CONCLUSIONS

Table 2-4 shows the effect of source frequency uncertainty and instabil-

ity on the minimum tracking position error achieved during contact and the

velocity error given at the same time. In Figs. 2-4 through 2-15 this error

is the minimum of the position error curves. Note that the position error

minimum occurs at 14 minutes after initial contact; the closest point of

approach occurs at 12.5 minutes after initial contact. As Figs. 2-4 through

2-15 and Table 2-4 indicate, the initial uncertainty in source frequency has

a small effect on position tracking error; the rate of source frequency vari-

ation appears to have virtually no effect. Table 2-4 indicates that the rate

of source frequency variation has no effect on velocity tracking error; but

2-9
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the initial source frequency uncertainty has a greater effect on velocity

error than it has on position error. The effect of initial source frequency

uncertainty on velocity error is shown in Figs. 2-16 through 2-27 where the

initial uncertainty varies from .01 Hz to 10 Hz. These figures show that the

initial velocity uncertainty (1.5 kft/min) is reduced very little until the

source passes through the sonobuoy field when initial frequency uncertainty

is high. This indicates that initial frequency uncertainty could make the

velocity tracking performance sensitive to target-sensor geometry (i.e., good

performance will depend more crucially on good geometry).

Table 2-5 shows the effect of a broadband source signal component on the

minimum tracking position error achieved during contact and the velocity error

given at the same time. In Figs. 2-28 through 2-32 this error is the minimum

of the position error curves. As before, the minimum occurs at 14 minutes

after initial contact. Increasing the ratio of total broadband to total nar-

K growband power decreases position and velocity error as indicated in Table

2-5. However, this effect is the expected consequence of the total increase

in signal power relative to the background noise level. That is, the total

U narrowband power and the background noise levels are held constant in the

examples described here. The decrease in tracking error with increased broad-

band source signal power is comparable to the decrease in tracking error with

increased narrowband source signal power studied in (1]. This indicates that

broadband source energy is comparable in value to narrowband source energy,

and that the broadband component of the source signal might be profitably

exploited by an acoustic signal processing system.

2-10
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a

TABLE 2-2. FREQUENCY EFFECT CASES STUDIED

Initial Uncertainty (Hz)

.01 .1 1 10

Fig. 2-4* Fig. 2-5 Fig. 2-6 Fig. 2-7
.01 Fig. 2-16** Fig. 2-17 Fig. 2-18 Fig. 2-19

Variation
Rate Fig. 2-8 Fig. 2-9 Fig. 2-10 Fig. 2-11

(Hz/min) .1

Fig. 2-20 Fig. 2-21 Fig. 2-22 I Fig. 2-23

Fig. 2-12 Fig. 2-13 Fig. 2-14 Fig. 2-15

Fig. 2-24 Fig. 2-25 Fig. 2-26 Fig. 2-27

TABLE 2-3. BROADBAND EFFECT CASES STUDIED

Broadband to Narrowband Power Ratio

10-5 i10-2 1 102  104

Fig. 2-28* Fig. 2-29 Fig. 2-30 Fig. 2-31 Fig. 2-32

Fig. 2-33** Fig. 2-34 Fig. 2-35 Fig. 2-36 Fig. 2-37

position error vs t I time

*position error versus time

** velocity error versus time
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TABLE 2-4. FREQUENCY EFFECT ON MINIMUM TRACKING ERROR

Initial Uncertainty (Hz)

.01 .1 1 10

.40 kft* .41 kft .42 kft .43 kft

.01 .08 kft/min** .11 kft/min .14 kft/min .15 kft/min

Variation
Rate .40 kft .41 kft .43 kft .43 kft

(Hz/min) .1

.08 kft/min .10 kft/min .15 kft/min .15 kft/min

.40 kft .41 kft j43 kft .43 kft

.08 kft/min .08 kft/min j .15 kft/min . .15 kft/min

i I

TABLE 2-5. BROADBAND EFFECT ON MINIMUM TRACKING ERROR

m Broadband to Narrowband Power Ratio

r r
10 - 5  10-2 1 102 i104

.40 kft* .40 kft .36 kft .22 kft .12 kft

.08 kft/min** .08 kft/min .07 kft/min .04 kft/min .04 kft/min

* minimum position error

** velocity error at time of minimum position error
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SECTION 3

RATE DISTORTION PERFORMANCE ANALYSIS

3.1 INTRODUCTION

This section discusses the rate distortion theory approach to analyze

mean square error in statistical nonlinear estimation problems. We present

here preliminary results for static estimation problems and compare the rate

distortion and Cramer-Rao-Van Trees approaches. Based on preliminary results,

the rate distortion method gives a computable lower bound which is tighter

than the Cramer-Rao-Van Trees lower bound in the regime of low signal-to-noise

ratio.

This section is organized as follows. Subsection 3.2 presents the

necessary background in communication and rate distortion theory. It also

sketches the communication system approach to statistical estimation problems.

Subsection 3.3 investigates the static estimation problem with a scalar state.

Subsection 3.4 extends this to the vector state case.

Finally, subsection 3.5 concludes the section, discussing other work and

directions for further investigation.

3.2 INFORMATION THEORY BACKGROUND

3.2.1 Communication Theory Point of View

Communication theory provides a useful interpretation of tracking prob-

lems different from the more conventional statistical estimation theory point

of view. The block diagram of a communication system is shown in Fig. 3-1.

3-1



ALPHATECH, INC.

Messages are generated by a source and coded by an encoder. The encoded

messages are transmitted through a channel, decoded by a decoder, and received

by a user. In communication problems the source, channel, and user are spec-

ified, and the problem is to design encoder and decoder so that messages

received by the user are accurate reproductions of the messages generated by

the source.

SOURCE - ENCODER ".

V CHANNEL .r

- USER . DECODER "

R-198

SFigure 3-1. Communication System Block Diagram

Figure 3-2 shows how one can interpret a tracking system as a type of commun-

ication system. In this interpretation the message generated by the source is

a set of target parameters (e.g., positions and velocities at a given time).

The encoder for passive tracking problems does nothing to code the source mes-

sage. In active tracking we can control the encoder to some extent (e.g.,

increase signal strength). The encoder and channel for the tracking problem

represent the transformation between target parameters and sensor outputs.
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One might also include preprocessing of sensor outputs as part of the channel

if that preprocessing is already specified. Finally, the decoder for the

0tracking problem is the tracking algorithm which provides estimates of target
parameters to a user. In tracking problems the source (target model), encoder

and channel (measurement model), and user are specified, and the problem is to

-mdesign a decoder (tracking algorithm) so that estimates received by the user

are accurate reproductions of the parameters generated by the source.

TARGET TARGET
PARAMETERS PARAMETERS

SOURCE ENCODER
(target (Fixed, does
model) nothing)

CHANNEL
(Measurement

model)

SENSOR

DECODER OUTPUTS
USER (Tracking 44

algorithm)

TARGET
PARAMETERS
ESTIMATES R-1989

Figure 3-2. Communication System Interpretation of Tracking System
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The communication theory viewpoint is useful because it allows us to

apply to the tracking problem techniques of information theory which do not

exist in statistical estimation theory. The techniques relevant to tracking

performance analysis involve rate distortion theory [4] first.developed by

Shannon [5],[6]. Distortion is a measure of the average error between the

* message generated by the source and the decoded message received by the user.

In a tracking problem it could be the mean square error in the tracking algo-

rithm's target parameter estimates. An important question about a communica-

tion problem is: given a source, channel, and user, under what conditions is

it possible to design an encoder and decoder that reproduce the source output

for the user with an average distortion that does not exceed some specified

upper limit D? This question is the analog of the tracking performance analy-

sis problem we are interested in: given target and measurement model, under

what conditions is it possible to design a tracking system that estimates

£target parameters with an average error that does not exceed some specified
upper limit D?

Rate d'atortion theory is able to answer the communication system ques-

tion in a precise and relatively simple way. Associated with the source and

user is a function R(D) of 1, called the rate distortion function. Associated

with the channel is a quantity C called its capacity. One can achieve average

-. distortion D if and only if channel capacity exceeds R(D). A typical rate

distortion function is shown in Fig. 3-3. To apply rate distortion theory to

the tracking problem we need to find the rate distortion function R(D) asso-

ciated with the target model and the user-defined error criterion, and find

the capacity C associated with the measurement model. These quantities will

tell us that an average tracking error smaller than D can be achieved only if

3-4
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R(D) < C. Note that the converse statement, that R(D) 4 C implies we can

achieve average error of D, is not true in tracking because we cannot control

N the encoder as one does in conventional communication systems.* Thus, the

inequality R(D) 4 C imposes a lower bound on the average distortion, lower

than which we cannot achieve with the given target model and measurement

-model. However, it may be possible that no tracking algorithm is able to

achieve this lower limit. Thus, rate distortion theory will give us lower

bounds on tracking error, and we will need to study the tightness of these

lower bounds as a separate issue.

Rate distortion theory provides techniques for computing or approximating

R(D) and C for general classes of sources, users (i.e., fidelity criteria),

and channels. We will describe some of the fundamental results of rate

distortion theory in the next subsection and apply these results to tracking

performance analysis in subsequent subsections.

I
3.2.2 Rate Distortion Theory Fundamentals and Estimation Problems

We are interested in tracking problems which can be formulated as the

following type of statistical estimation problem.

x(t+1) = Ax(t) + w(t) (3-I)

y(t) = h(x(t)) + v(t) (3-2)

In Eqs. 3-I and 3-2, the variable x(t) is the state at time t we desire to

estimate given measurements up to that time. Note that the state evolves

linearly (Eq. 3-1), and we assume w(t) and v(t) are zero mean Gaussian random

vectors. The performance analysis problem is to approximate the mean square

*For very special systems (e.g., linear Gaussian ones), this is true.
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error of an optimal estimator. In previous work [1] we found that many track-

* ing problems can be formulated as above, and this particular mathematical

13 structure simplifies the computation of the Cramer-Rao-Van Trees performance

bound [11,[71,[81,[9]. We wish to see here whether similar simplifications

occur for rate distortion theory performance bounds.

M Before attempting to tackle the dynamic problem formulated in Eqs. 3-1

and 3-2 we will study the static problem

y = h(x) + v (3-3)

where x, v are assumed to be Gaussian random vectors and h is a nonlinear

function of x. Our approach is to understand the general static problem of

Eq. 3-3 first. We can then write the dynamic problem of Eqs. 3-1 and 3-2 as

a large static problem and try to exploit the recursive structure of this spe-

cial type of static problem to obtain an efficient, recursive approximation

Pof the minimum mean square estimation error. In this report we will consider

only static problems; we will discuss dynamic problems in a subsequent report.

The rate distortion function of a memoryless scalar Gaussian source of

* mean x and variance Q with respect to the squared-error criterion is [4, p.991

R(D) log (2 (3-4)

R) 2 D

The capacity C of a channel defined by

y - h(x) + v (3-5)

where v is zero mean Gaussian with covariance matrix R and dimension m is

given by the mutual information I(y;x) between y and x.

3-7
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C - I(y;x) (3-6)

We cannot compute I(y;x) for general nonlinear h, but we can approximate it

as follows.

I(y;x) H(y) - H(ylx) (3-7)

m Equation 3-7 gives the mutual information in terms of the differential entropy

H(y) and the conditional differential entropy H(ylx). Now we can compute

H(yjx) exactly:

m I
H(ylx) = H(v) - log(21re [det R]r) (3-8)

2

We cannot compute H(y) in general, but we can bound it as follows [4].

m 1!

H(y) 4 - log (21re [det Alm) (3-9)
2

In Eq. 3-8 the mxm matrix A is the covariance of y:

A E([y - E(y)] [y - E(y)]T) (3-10)

where E(.) denotes mathematical expectation and T denotes matrix or vector

P transposition.

If D is the minimum mean square error

D = mn E((x - (y))2 ) (3-11)

where the mimimum is taken over all estimators x based on the measurement y,

then rate distortion theory [41 tells us that

R(D) C . (3-12)

3-8
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From Eqs. 3-8 and 3-9 we see that

I detA
C |- log( ) (3-13)

2 detR

Combining Eqs. 3-4, 3-12 and 3-13 gives

1 Q I detA
2 log (D) < - log(-) (3-14)
2 lo 2~ detR

or equivalently,

QdetR
•D > -et (3-15)

detA

Thus, from Eq. 3-11 we see that

QdetR
E((x - (y))2) (3-16)

detA

for any estimate of x based only on y. Note that in this problem the covari-

ance of y can be written

A- + R (3-17)

where

r , E([h(x) - E(h(x))] [h(x) - E(h(x))]T) (3-18)
L

Thus, we have

QdetR
E(x - (y))2) >det ( + R) (3-19)

This is the basic result of rate distortion theory we will use in the follow-

ing subsections to analyze the minimum mean square error in static estimation

problems.
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3.3 SCALAR STATE

3.3.1 Computation of the Rate Distortion Bound

U In this subsection we consider the problem of estimating a scalar

Gaussian state x with mean x and variance Q given the vector measurement

y f h(x) + v (3-20)
U

where v is a Gaussian random vector with dimension m, 0-mean, and covariance

R. In subsection 3.2 we found the basic rate distortion bound (RDB) of mean

square error:

2 • detR
E((x - dey)) t (3-21)det (r + R)

where

r E([h(x) - E(h(x))] [h(x) - E(h(x))IT) (3-22)

To compute the RDB requires computing r, or equivalently, computing

E(h(x)) (3-23)

and

* E(h(x)h(x)T) . (3-24) -

The expectations Eqs. 3-23 and 3-24 are taken with respect to a Gaussian dis-

tribution and can be computed in closed form for a large class of nonlinear h.

Note that we utilized this fact in earlier work [I to compute Cramer-Rao-

Van Trees bounds. Indeed, if h(x) is a sum of products of polynomials, expo-

* _nential, and sine or cosine functions, then we can compute the expectations

in Eqs. 3-23 and Eq. 3-24 in closed form. This is true also if x is a vector.
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The computation of such expectations derives from the basic formula

E(¢(u,x)) = (u) (3-25)

where

"(u,x) exp(uTx)

T (u) exp(uT + 1 uTQu) (3-26)
2

where u = (ul, u2, ...un)T is a vector of complex numbers, and x is a Gaussian

random vector of dimension n, mean x, and covariance Q. Consider the scalar

case n=1 for example. If n is a real number we find

_x 2

E(eux eUX + -2 . (3-27)
2

If u = i (imaginary number /T), we obtain

-1
-Q

eix ix 2 (3-28)3 E(e ) =e e -

which gives the two results

-1-Q
E(sin x) = sin x • e 2 (3-29)

-1
-Q

E(cos x) = cos e 2 (3-30)

Taking derivatives of Eq. 3-26 with respect to u gives us an expression for

E(xn):

E(xn)= + 1 u2  (3-31)
du n  2 Q u=O

We can obtain other expectations by combining these operations.

3-11
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In general, we consider the class An of all functions f(x) which can be

written

p
f(x) = ck * DO*(uk, x) (3-32)

k=1

where ck are complex constants, uk are constant complex vectors, and Dk are

differential operators of the general form

a k(1) a k(2) a k(n)Dk = i 2 -(- )  •(3-33)

1 2 n

For example, in the scalar n=1 case

n a an Ox
S x (Ox) . (3-34)

n

Note that if fj and f2 are in An, then so are ft f2 and fl + f2 . The class

An also contains all constant functions.

If f(x) is given by Eq. 3-32, then

E(f(x)) f  ck DkT(uk) (3-35)Lk= 1_

is the closed form expression for the expectation.

Thus, we see that if each component function of h(x) is in An, then each

component of h(x) h(x)T is also in An and we can compute the expectations in

Eqs. 3-23 and 3-24 in closed form. Furthermore, we can approximate any non-

linear function h using functions in An; and this gives us a method for

approximating the expectations in Eqs. 3-23 and 3-24 for general h. In the

next subsection we will use this approach to compute the rate distortion bound

in some examples.
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3.3.2 Examples of the Rate Distortion Bound

3.3.2.1 Linear Measurements

Suppose that h(x) - h • x is linear. Let us compute the RDB for

y -h x + v . (3-36)

The bound for Eq. 3-36 will be the same as for

fih x+ (3-37)

where

h - h (3-38)

v v (3-39)

The second version will simplify computation because the covariance of is

just the mxm identity matrix Im. The main quantity to compute is

det (r+ Im ) det (h h Q + Im) (3-40)

This is easy if one notes that the determinant of a matrix is the product of

Iits eigenvalues. The matrix

hhT Q + Im (3-41)

has one eigenvalue

-T . O+1 (3-42)

and an-I eigenvalues 1. Thus, the RDB is

RDB - (3-43)

3-13
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In terms of h and R this is just

RDB = (hTR-lh + Q-1)-1 (3-44)

which is in fact the minimum mean square error for the linear problem.

3.3.2.2 Scalar Nonlinear Measurements

Let us assume that y and v are scalar random variables, and let us con-

sider examples of nonlinear h(x). For simplicity, we will assume x 0 in

this set of examples.

h(x) = xn

The RDB in this case is

RDB (Bn Qn-1R-1 + Q-1)-1 (3-45)

where

(2n)! (n!)2  t
Bn = (3-46)

2n • n! 2n[(n)!]2

2

for even n = 2, 4, 6,... and

(2n)!
Bn (3-47)

2n • n*

for odd n - 1, 3, 5,... Figure 3-4 shows the dependence of this bound on R

for fixed Q - 1.0 and n 1 1, 2, 3.

h(x) = sin x and h(x) = x - x 3/6

The bound for sin x is

3-14
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RDB ( [1-e -2Q -1R-1 -1)-1 (3-48)

x 3

The bound for the third order expansion of sin x, namely x - - is
6

5

RDB ([1 - Q + - Q2 ]R-1 + Q-1 )-I . (3-49)
12

Figure 3-5 shows these bounds together with that for h(x) x versus R for

Q =1.0.

3.3.2.3 Identically Distributed Conditionally Independent Scalar Measurements

Suppose that we take N measurements

y(t) = h(x) + v(t) (3-50)

such that v(t) are independent, scalar Gaussian random variables of variance

R. Let

r = E([h(x) - E(h(x))] 2 ) . (3-51)

Then we can compute the RDB for Eq. 3-50 in terms of Q, r, R and N. The

static vector measurement problem equivalent to Eq. 3-50 has the RDB given by

Q • det (R • IN)
(3-52)

det (rN + R * IN)

where IN is the NXN identity matrix and rN is the NXN matrix which has all of

its elements equal to r. Reasoning as in subsection 3.3.2.1 we can compute

the determinant in the denominator of Eq. 3-52. Note that rN is a rank I

matrix with only one nonzero eigenvalue, namely

Tr rN = N r (3-53)
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where Tr denotes the trace of a matrix. Consequently, rN + R IN has one

eigenvalue equal to N * r + R and N - 1 eigenvalues equal to R. Thus, the

I determinant is (N • r + R) RN-i and the RDB is

RDB = ([N - r Q-11 R-1 + Q-I)-1 * (3-54)

I a Note that as N- the RDB is asymptotically equal to

QR
RDB . (3-55)

Nr

3.3.2.4 Nonidentical, Conditionally Independent Scalar Measurements

Suppose that

y(1) = x + v(1) (3-56)

y(2) = x2 + v(2) (3-57)

O where v(1), v(2) are independent 0 - mean, Gaussian random variables with

variance R. Assume x has 0 mean and variance Q. The variance of the vector

measurement y - (y(1), y'2 ))T is

r = (3-58)

Thus, the RDB for this problem is

RrDB = (1I + 2Q + 2Q2R-1] . R71 + Q-1 )-1  (3-59)

Figure 3-6 shows this bound with Q = 1 versus different values of R. Figure

3-6 also shows the mean square error for only one measurement (namely Eq. 3-56).
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3.3.3 Comparison to the Cramer-Rao-Van Trees Bound

3.3.3.1 The Cramer-Rao-Van Trees Bound

Before comparing the Cramer-Rao-Van Trees lower bound (CRVB) to the RDB,

let us review what the CRVB is for the static estimation problem formulated

above. Van Trees [71 has derived a lower bound on the error convariance of

* any estimator i(y) for the problem in Eq. 3-20. The bound is

E([x - i(y)] Ix - j(y)]T) > [r* + (3-60)

where the inequality is in terms of symmetric matrices, and F is defined as

3h 3h
r* = E(- (x)TR-1 -(x)) . (3-61)

ax ax

If x is a scalar random variable, then Eq. 3-60 gives the following lower

bound on the error variance

E([x-j(y)J2) > [r* + Q 1 1- (3-62)

Note that Eq. 3-61 involves computations similar to those required for the

* RDB. Indeed, if h is a member of the class of functions An defined in subsec-

3h
tion 3.3.1, then the components of - also belong to An. In this subsection we

ax
will study the relation of the CRVB of Eq. 3-62 to the RDB of Eq. 3-21. Both

are lower bounds of the minimum mean square error. Can we determine condi-

tions under which one is a tighter bound than the other?

3.3.3.2 Comparison of Bounds for Scalar Measurements

Let us start by computing the CRVB's corresponding to the examples of

subsection 3.3.2.2.
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h(x) - xn

The CRVB in this case is

CRVB (CnQn-i R- 1 + Q-1 )-1  (3-63)

where
(2[In-1])!

Cn = n2 • (3-64)
* 2n- 1 [n-i] !

Figures 3-7a and 3-7b show CRVB and RDB for n = 2,3 versus R with Q = 1.0.

Note that RDB > CRVB in these examples. Indeed, one can see that

Cn  Bn (3-65)

for all n f 1,2,... and therefore CRVB 4 RDB for all n.

h(x) = sin x and h(x) = x - x3/6

The CRVB for h(x) = sin x is found to be

1
CRVB = (- [I + e- 2 Q]R- 1 + Q-I)-1 (3-66)

2

x3

and that for h(x) x - - isa 6

Q
2

CRVB = (1 - Q + 4R-1 + Q- 1 )- 1  (3-67)

- Figures 3-8a and 3-8b show the CRVB and RDB for these two nonlinear examples

*(Q - 1.0 and R is varied). Note that the RDB is always tighter (i.e., CRVB <

RDB), and in fact one can prove this is true. It is interesting to note that

as Q+-, Eq. 3-48 predicts (correctly) that the mean square error of an esti-

mate of x given y = sin x + v blows up. The CRVB Eq. 3-66 predicts (incor-

rectly) that the error remains bounded.
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General nonlinear h(x)

As one might expect from the examples above, it is possible to show that CRVB

4 RDB all the time in case of scalar measurements. Furthermore, one can show

CRVB = RDB if and only if h(x) is linear. Recall that our underlying assump-

tions at this point are that x is a scalar Gaussian random variable and y is a

scalar measurement. We prove the following theorem:

Theorem. If h(x) is continuously differentiable in x, and

the expectations E(h(x) 2), E([h'(x)]2) are both finite, then

CRVB 4 RDB

where CRVB = RDB if and only if

h(x) - ax + b

for constants a,b

We will prove :his theorem in the remainder of the subsection. Assume

first that x 0 and define

x2
O(x) [h(x) - h(O2 -1 - - (3-68)

2Q

for x 0 0, and

U0(0) =0 . (3-69)

Note that t(x) is continuously differentiable and

2x

0'(x) 2[h(x) - h(0)I h' x)x e 2Q

2
x

- [h(x) - h(O)]2 x-2 e 2Q (3-70)

x2

2 -[h(x) - h(0)) e 2Q

Q

3-26
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for x *0, and

0'0 [h'(0)] 2  
.(3-71)

Given that E(h(x)2) and E(h,(x)2) are finite, we have that

f 0-(x) dx - lrn W$x) - 0(x) 0 (3-72)

Note that by definition of mathematical expectation,

E(f(x)) = i- J f(x) e 2Q dx .(3-73)

Using Eqs. 3-70 and 3-73 to rewrite Eq. 3-72 gives us

E(h-(x)2) =Q- 1 E([h(x) - h(0)]2)

+ E ([h'(x) -h(x) -(3-74)2

x

ILet _U E(h(x)). Then

E(h,(x)2) Q-1 E([h(x) - hi 2) + Q-1h h(0)12

+ (h() h(x) - h(0) 12) (3-75)

x

it follows that

E(h,(x) 2 ) > Q-1 E([h(x) - j ]2) (3-76)

with equality if and only if

Ii h(0) (3-77)

and

h'(x) -h(x) - h(O) (3-78)
x
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The Eqs. 3-77 and 3-78 are equivalent to h being of the form

h(x) ax + b (3-79)

for constants a, b. Note that Eq. 3-76 is equivalent to

r*-R > r.Q-I . (3-80)

Since

CRVB = + Q-I)-1

and

RDB = (rQ-lR-l + Q-l)-1 (3-81)

Eq. 3-80 proves that CRVB ; RDB, at least for the case x = 0.

The general case of x * 0 follows easily from the x = 0 case. Simply

apply the earlier results to x -x with the measurement function h(x + x).

This problem will yield the same bounds as for x, h(x).

K
3.3.3.3 Comparison of Bounds for Identically Distributed - Conditionally

Independent Measurements

Under the problem assumptions of subsection 3.3.2.3, we can show that

an CRVB 4 RDB holds for general nonlinear h(x). Recall (Eq. 3-54) that

RDB = ([N.rQ-I]R-I + Q-1)- 1  (3-82)

One can easily show that

CRB - ([N.r*RJR ~I + Q-1 )-1  (3-83)

We proved that rQ-1 4 r*R in the last subsection. Consequently, we see that

CRVB 4 RDB in this case also. Note that CRVB predicts a mean square error

that is asymptotic to

3-28
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| . 1

CRVB - (3-84)
Nr*

as N- . This is in constrast to

QR
RDB - (3-85)

Nr

* IThus, we have

CRVB r
(3-86)

RDB QRr*

asymptotically as N+-. For nonlinear h(x) we saw previously that r/QRF* < 1.

Thus, the CRVB predicts a faster rate of decrease in mean square error than is

in fact possible.

3.3.3.4 Comparison of Bounds for Vector Measurements

From the preceding results one might conjecture that CRVB 4 RDB in

general. The following example shows that this need not be true. Consider

the example of subsection 3.3.2.4. The CRVB for this example is

CRVB - ([I + 4QIR71 + Q-1)-I (3-87)

Figure 3-9 shows CRVB and the corresponding RDB of Eq. 3-59, namely

RDB = ([I + 2Q + 2Q2 R-I]R - 1 + Q-1)- 1  (3-88)

It is easy to see in this example that CRVB ; RDB if R 4 Q and CRVB 4 RDB if

R > Q. We can show in general that CRVB 4 RDB if R is sufficiently large

* (i.e., as signal-to-noise ratio approaches 0).

Without loss of generality (by using the same transformation as in

subsection 3.3.2.1) we can assume that the measurement noise covariance is a

3-29
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scalar constant R multiplied times the mxm identity matrix Im. Then we have

RDB = Q.(det[Imxm + R71 r])-l (3-89) -

and

m
CRVB = C[I E(h(x) 2 ) ]R- + (3-90)

k=1 k

where hk(x) are the components of h(x). The determinant in Eq. 3-89 can be

expanded in powers of R71 so that

det (Imm + R71 r) 1 + Tr[R-1 r + 0(R 2) (3-91)

where O(R-2 ) denotes terms of order R- 2 or higher powers of R71. The trace is

n
Tr[R-r] = R71 I E([hk(x) - E(hk(x))] 2 ) (3-92)

k=1

Thus, we see that

n
RDB = ( I E([hk(x) - E(hk(x))1 2 ) Q-1 R71 + Q-1

k=1

+ 0(R-2 ))-1  (3-93)

The theorem of subsection 3.3.3.2 implies that

E([hk(x) - E(hk(x))1 2 ) Q-, 4 E(hk(X)2 ) (3-94)

for each k with equality if and only if hk is linear. Consequently, !f h is

not linear, then CRVB < RDB for R suffiently large. If h is linear, then both

bounds are equal to the minimum mean square error.
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3.4 VECTOR STATE

3.4.1 Rate Distortion Bound for Vector State and Scalar Measurement

Rate distortion theory naturally gives bounds on scalar errors. For

vector state estimation problems, however, we need a bound on the error covar-

lance matrix such as the CRVB provides (Eq. 3-60). In this subsection we

W derive a RDB for vector state estimation problems with scalar measurements.

Suppose that

y - h(x1 , x2) + v (3-95)

where v is a 0-mean Gaussian random variable of variance R and x1, x2 are

jointly Gaussian random variables. We are interested in deriving a lower

bound for the mean square error

E([xj - x(y)12 ) (3-96)

of an estimate 1(y) of x1  Suppose x2 were a fixed, known constant. Then

the previous result for a scalar state implies that

E(lx1 - 1(y)12 1x2) ([r1 (x2 )Q1-f'R-
1 + Qi-)- ' (3-97)

where

rl(x 2 ) E([h(xl,x2) - E(h(xl,x2)1x 2 )]
2 1x2) (3-98)

and

Q1 EUx - E(xllx 2)]
2 1x2 ) • (3-99)

Note that the conditional variance in Eq. 3-99 does not actually depend on x2

because x1 and x2 are jointly Gaussian.

Equation 3-97 can also be written as

3-32
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-(xj xl(y)1 2 x2)-' i rl(2)Ql-'1R-' + Qf-  . (3-100)

Jensen's inequality states that

. (zO) •E(() (3-101)

if * is a convex function [10). Note that *( ) - is convex if 0.

Thus, we can apply Jensen's inequality to obtain

E( &)-I E( (3-102)

If = E([x I -il(y)]
2 1x2) we obtain

E([x 1 - I(y)2)-l . [r1 * Qj- 1 JR-1 + Qf-l (3-103)

r

where

ri = E(rl(x2)) (3-104)

i IThis gives the rate distortion bound

E(Ixl - 1(y)] 2) ([rIQI-]R-I + QI-I)-I (3-105)

where

rI  E([h(xlx2) - E(h(xl,x2)1x2)]2) (3-106)

Note also that

ri = E(h(xl,x2) 2 ) - E([E(h(xl,x2)lx2)1 2) (3-107)

Equation 3-105 is our basic RDB for the vector state, scalar measurement

case. Note that x2 could be a Gaussian random vector. Thus, for

y = h(xl,x 2 ,...,xn) + v (3-108)
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one has the same bound Eq. 3-105 except that

r

r - E([h(Xl,x2,...,xn) - E(h(xl,x2,...,Xn)lx2...xn)12 ) (3-109)

3.4.2 Computation of the Rate Distortion Bound

To compute the RDB of the previous subsection it is necessary to compute

K the expression r1 in Eq. 3-106 and 3-107 (or more generally, Eq. 3-109). It

is possible to do this in much the same way as we did in subsection 3.3.1.

Specifically, if h belongs to the class An of functions defined in subsection

3.3.1 (Eq. 3-13), then we can compute r1 in closed form.

Suppose that xI is a random n-dimensional vector, x2 is a random

m-dimensional and xl,x2 are jointly Gaussian. Then we know

E(xl,x2) = a + Bx2 (3-110)

E([xl-E(xllx2 )] [x1 - E(xllX2)jTlx 2) = C (3-111)

for constant vector a and constant matrices B, C. If

0(u,x 1 ) - exp(uTxl) (3-112)

then

E(¢(u,xl)Jx 2 ) 4'(u,x2) (3-113)

where

(ux 2 ) exp(u a + u Bx2 + I uTCu) • (3-114)2

where u is an n-dimensional vector of complex constants. Note that for any

constants a, B, C, u the function 4<u,x2) of x2 belongs to An. Thus, if

p
f(xl) - Ck Dkt(uk,xl) (3-115)

k-1
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as in subsection 3.3.1 (Eqs. 3-32 and 3-34), then

p
E(f(xz)lx 2) = X Ck Dk (UkX2) . (3-116)

In other words, if f(xj) belongs to An, then E(f(xl)1x2) belongs to Am .

* Consequently, if h(xl,x2,...xn) belongs to the class An of functions,

m then E(h(xl,x2...,xn)1x2,...Xn) belongs to An_1 and so does [E(h(xl,x2,...xn)I

x2,...Xn)]2 . Thus rl in Eqs. 3-106, 3-107, and 3-109 can be computed in

closed form.

3.4.3 Examples of the Rate Distortion Bound

3.4.3.1 Linear Measurement

r. Suppose that h(x) - h-x is linear (h is a row vector and x is a column

vector). Suppose that x has been partitioned into a one-dimensional component

xI (which we want to estimate) and an (n-i) dimensional component x2.

K y - hI *xI + h2 *x2 + v (3-117)

is the measurement equatlin. The mean and covariance of x are given by

m E(xl) - x (3-118)

E(x2 ) x X2 (3-119)

E([xl -1]2) - QI1 (3-120)

E([xl- i1 [x2 -x 2]T) - Q12 (3-121)

E([x 2 - x2] lxi -1]) Q21 (3-122)

E([x 2 - 721 1x2 - x2 ]T) - Q22 (3-123)
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The conditional mean and variance of xi given x2 are

E(xlIX 2 ) -X 1 + Q12 Q22- 1 [x2 -X21 (3-124)

E(xj - E(xllx 2 )J
2 1x2 ) Q1l - Q12 Q22 - 1 Q21 • (3-125)

Thus, we find that

Q= Q1 - Q12 Q22 - 1 Q21 (3-126)

and

r = rl(x 2 ) h1
2  Q, • (3-127)

The corresponding bound is

RDB = (hl2R-1 + QI- 1 ) - 1  (3-128)

= (hj2R-1 + [QII -Q12 Q22- 1 Q21 1- 1 )-' (3-129)

K Note that the choice of the component x2 is somewhat arbitrary, and one could

try to select it to make RDB as large as possible. For example, one might

T
choose x2 independent of xi so that Q21 = Q12 = 0. Thus, the largest RDB

bound obtained by choosing x2 independent of xI is in the linear case

RDB = (hl2 R-I + QII-I) -  . (3-130)

-_This is generally smaller than the minimum mean square error. We will examine

this more closely in subsection 3.4.4 where we compare the RDB with the CRVB.

Let us remark that it is possible to develop a tighter rate distortion bound

that gives the minimum mean square error exactly. However, this bound appears

to be difficult to compute in nonlinear problems.
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3.4.3.2 Nonlinear Measurement

Consider the simple example

y = x1
2 + x 2 + v (3-131)

where xI and x2 are independent Gaussian random variables with variances QI1

- and Q22 respectively. Then QI - Q11, rl - 2QI12 and the RDB is

RDB - ([2QI1 ]R-l + Q11-1) -  . (3-132)

3.4.4 Comparison to Cramer-Rao Van Trees Bound

3.4.4.1 Examples

The following examples show that neither CRVB ( RDB nor RDB 4 CRVB in

general for vector states and scalar measurements. Suppose that xI and x2 are

independent Gaussian random variables with respective variances QII and Q22.

h(x ) x x + x

This is an example of linear measurements. As we found above, the RDB is

RDB - (R- 1 + Q-1)-1  . (3-133)

The CRVB is also the minimum mean square error for this case and is given by

CRVB - (R71 + Q11 - 1 - R-21Q2 2
-1 + R-]-I) - I  

. (3-134)

Thus, in this case we always have CRVB > RDB. Figure 3-10 shows the two

bounds versus R for QII - Q22 " 1.0.

h(x,X 2) - x2 + x2

We computed the RDB above:
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RDB = ([2Q 1 1JR
-1 + QI1-I) - I  (3-135)

The CRVB is easily found to be

CRVB f ([4QIIIR-I + Q1-I) - 1  . (3-136)

Thus, in this case we always have RDB > CRVB. Figure 3-11 shows the two

bounds versus R for Q11 = 1.0.

3.4.4.2 Comparison at Low Signal-to-Noise Ratios

We can prove a general asymptotic relationship between CRVB and RDB as

R+-. This relationship is similar to the one we proved in subsection 3.3.3.4.

Let x be partitioned into components xI and x2, and define Qii, Q12, Q21, and

Q22 as in subsection 3.4.2.1. Recall that

Q1 Q1 - Q12 Q22 - 1 Q21 (3-137)

and

rl E([h(xt,x 2 ) - E(h(xl,x 2 )lx2 )j
2 ) (3-138)

The RDB is simply

m-
RDB - ((rIQI-I]R- 1 + QI-I)-I (3-139)

The CRVB gives a lower bound on the error covariance matrix. This matrix

bound is

B = (Q- + R7I E( a h)) (3-140)

The CRVB for the xj estimate is the B1j element of the matrix B. For large R

we can approximate B by
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ahT ah
B - Q - R-IQE(- )Q + O(R-2 ) (3-141)

ax ax

II
If Q12 - 0, Q21 = 0, then we have to first order in R-

1 :

CRVB = Q11 - R-1 QII- 2 ([ A 12) + O(R-2) (3-142)

Equivalently, we have

ah
CRVB = ([E([ -] 2 ) ]R- 1 + Q11-1 + O(R- 2 )) - 1  (3-143)ax1

to compare with Eq. 3-139. From the scalar state inequality Eq. 3-76 we have

ah
*Q-1 - rl(x 2 ) 4 E([-J ]21x 2) (3-144)

and consequently,

iI Q-lr 1 4 E(h ]2) . (3-145)
ax1

We will assume that the partition xlx 2 of x has been chosen so that xi and x2

I I. are independent (i.e., Qj? = 0, Q7i = 0).

Then we see that Q1 - QI1 and

CRVB 4 RDB + O(R-2 ) . (3-146)

That is, there is a term O(R -2 ) which converges to 0 as fast as R -2 when R+-,

and the CRVB is larger than RDB by at most 0(R-2 ). Note that if h depends on

xj in a nonlinear way, then we must have CRVB < RDB for sufficiently large R.
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This is the case in the example h(xl,x 2 ) = x1
2+x2 above. In the linear exam-

ple h(xl,x 2 )-xl+x2 , one can see from Eqs. 3-133 and 3-144 that CRVB exceeds

I m RDB only by a term of order R
- 2

3.4.5 Rate Distortion Bound for Vector State and Vector Measurement

If an m dimensional vector measurement is taken, the results of subsection

3.4.1 change as follows. The earlier result Eq. 3-19 for the scalar state case

implies

E([xI - x1 (y)]
2 1x2) > Qt (det(rl(x2 )R-

1 + Im))-I (3-147)

where Im is the mxm. identify matrix, Q1 is given as in En. 3-99 and

rl(x 2) 
= E([h(xl,x 2 ) - E(h(xl,x 2 )1x2 )] [h(xl,x 2 ) - E(h(xl,x 2 )lx2 )]T1x 2 )

(3-148)

Thus we have

E([xl- x(y)j2 ) >QI "{E(det(rl(x 2 )R
- l + Im))1 1  (3-149)

The right-hand-side of Eq. 3-149 is computable in closed form if each component

IL
of h belongs to the class An. Unfortunately, this computation appears to be

difficult in general, and further development is required to make the RDB use-

ful for the general vector state, vector measurement case. However, if the

measurement vector consists of N identically distributed, conditionally inde-

pendent scalar measurements, then RDB is given by

RDB - ([NrlQ 1-']R-l + QI-I)-
1  (3-150)
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3.5 CONCLUDING REMARKS

3.5.1 Summary

3 IIn this report we have described how to compute analytically rate distor-

tion bounds of mean square error for static nonlinear estimation problems of

the form
y = h(x) + v (3-151)

where x and v are Gaussian distributed. Specifically, we obtained a lower

bound of

E([xl - l(y)j 2 ) (3-152)

where x1 is a scalar component of x. We showed that the rate distortion

bound is asymptotically tighter than the Cramer-Rao-Van Trees bound in the

limit as the noise covariance R becomes unbounded (i.e., as signal-to-noise

ratio approaches 0). We illustrated the rate distortion bound and its com-

parison to the Cramer-Rao-Van Trees bound using a number of simple examples.

3.5.2 Conclusions

Based on present results, the rate distortion bound offers a better

Id approximation of mean square performance in the high measurement noise regime

than the Cramer-Rao-Van Trees bound. Furthermore, the rate distortion bound

requires little, if any, more computation than the Cramer-Rao-Van Trees bound.

Thus, the rate distortion bound appears to complement the Cramer-Rao-Van Trees

method in the nonlinear, high noise regime where the latter bound is known to

give overly optimistic approximations of the true mean square error. However,

in order to make the rate distortion theory useful for the dynamic nonlinear

estimation problems of tracking, we must develop our current results in two

significant ways:
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I. it is necessary to obtain a simple rate distortion bound in
the case of a vector state and a general vector measurement;

2. it is necessary to derive a recursively computable bound for
dynamic estimation problems.

3.5.3 Other Work

Zakai and Ziv (11] first applied rate distortion theory to mean square
I

performance analysis of nonlinear filtering problems. The results of [111

were restricted to a special class of continuous-time processes. Galdos [121

extended these results to general vector processes, both in continuous and

discrete time. In this section we have derived some preliminary bounds on

individual component errors as in Eq. 3-152. The results of [121 give bounds

on the sum over all component errors

n

I E(xk - k(y)1 2 ) . (3-153)
k= 1

We believe the approach here, based on our earlier work [131,[141, will yield

a more accurate estimate of mean square estimation error. However, until re-

sults of this section are extended, we can make no comparisons with [111,[121.

I 3.5.4 Further Investigation

Other directions for further investigation exist beside the two necessary

extensions noted in subsection 3.5.2 above. One direction would extend the

bounds to problems for which x is an unknown, non-random parameter (or a mix-

ture of random and non-random parameters). In [1] we found that a large class

of tracking problems can be modeled by a state process which consists of an

unknown deterministic component and an unknown, Gaussian distributed random

component. Rate distortion theory for nonstatistical sources (E - entropy

methods [4) may allow us to derive such results.
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Another direction is to study the effect of architecture constraints,

such as preprocessing of measurements, on tracking estimation performance.

We investigated this problem in [11 using Cramer-Rao-Van Trees methods. A

rate distortion approach, based as it is on info -ation theory, would provide

a more general, more accurate method of analyzing architectural constraints.

I
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INC

SECTION 4

AMBIGUITY PERFORMANCE ANALYSIS

4.1 INTRODUCTION

Ambiguity analysis ((71,[151 Chapter 10) is an attempt to understand the

global nature of a parameter estimation problem. This is in contrast to Cramer- _

Rao methods which provide a more local analysis of estimation performance.

The Cramer-Rao lower bound on mean square estimation error will be an accurate

estimate of true optimal performance provided that it is possible to acquire

or maintain an estimate near the unknown parameter at all. The local problem

(addressed by the Cramer-Rao method) is to analyze accuracy given acquisition;

the global problem (addressed by ambiguity analysis) is to analyze the acqui-

sition performance.

The ambiguity approach can be formulated as follows. Suppose one wishes

to estimate an unknown parameter x given a measurement y. Let i denote the

maximum likelihood estimator of x which depends on y and consider the mean

square estimation error

n
Ex{i x - )2 - I Ex{(x - j) 2 1 ROk} Px{fcRk}

k-O

where E (-) and P (.} denote the expectation and probability given that x isx x

the true value of the parameter- and R0 , R1 , ..., Rn are ni1 regions subdivid-

ing the x parameter space. Approximate Ex{ - by _2 andxj~x- 21i~kj y r andapproxi-

mate P {XC Rk} by pk o Then the mean square error is approximated by
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n
-l )2} - ) I 2 Pk

For example, assume that the true parameter xR 0 and let c02 be the Cramer-Rao

bound for the problem. If k * 0, choose a typical xkcRk and let ek2 . (x - xk) 2.

Approximate PxfXcRkj by the following hypothesis testing problem. Let xn(Y)

be the xk that maximizes P xk{y and let pk be Px{XneRkl.

Can we show rigorously that

n
I _-k2 Pk 'Ex{(x - )2}
k-O

as the number n+l of regions increases and the size of the regions decreases? J

Can we estimate the size of the error for a given n and choice of regions Rk?

In this section we provide detailed convergence analysis for a partic-

ular sequence of approximations for the calculation of the error variance in

a maximum likelihood estimation problem. We restrict our attention here to a

scalar problem. While several of the detailed calculations we perform do use

the scalar nature of the problem to allow us to write down very explicit for-

mulae, the general nature of the analysis can be extended (this would, how-

* ever, involve the determination of several additional estimates to replace

the closed-form expressions available in the scalar case).

4.2 PROBLEM FORMULATION

We consider the problem of estimating a scalar parameter x which is known

to take values on the interval [0,1]. We have available the scalar measurement

y - h(x) + v (4-1)

where v is a Gaussian random variable with mean 0 and variance 1. We also

assume
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h(O) > 0 (4-2a)

0 < h'(x) < M < for all xz[0,1I (4-2b)

and h(x) can be expanded in a series around any point ac[0,1]:

dh
h(x) = h(a) + - (a)[x - a] + R(x - a) (4-3)

dx

where R(x - x0) = O((x - x0)
2). Note that Eq. 4-2a is a trivial assumption

since we can always add a constant to h. Also note that the monotonicity

assumption (Eq. 4-2b) simply avoids the possibility that h(x1) - h(x2) for

any x1, x2 [O,1j.

The problem with which we are concerned is the following. Suppose that

the true value of x is x0 . We wish to calculate (or more precisely to obtain

a sequence of approximations to)

E[(x - xo)21x - x°]

where x is the maximum likelihood estimate. That is, let

1
I(x) - yh(x) - - h(x)2  (4-4)L 2

Then

- arg max £(x) (4-5)
x

We begin with several preliminary calculations.

Computation of the Distribution Function for x

Let us rewrite Eq. 4-4 using Eq. 4-1 and the fact that x - 0

1
I(x) - h(x0) h(x) + v h(x) h(x)2  (4-6)
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Consider the derivative of Eq. 4-6

V'(x) - [h(x 0) + v - h(x)]h'(x) (4-7)

Note that, thanks to Eq. 4-2b V'(x) - 0 if and only if

v = h(x) - h(x 0 ) (4-8)

Thus, again thanks to Eq. 4-2 we see that

£'(x) > 0 for all xc[0,1] if v > h(1) - h(x0) (4-9a)

'(x) < 0 for all xc[0,1J if v < h(0) - h(x0) (4-9b)

Thus
Prob(x - 0ix - x0) - Prob(v < h(0) - h(x0) )  (4-10a)

Prob(x - 1ix - x0 ) - Prob(v > h(l) - h(x 0)) (4-10b)

If vc(h(O) - h(xo), h(1) - h(xo)), x will be the value of x for which '(x) - 0,

i.e., the value for which Eq. 4-8 is satisfied. Thus,

* Prob(0 < X < aix - x 0 ) - Prob(h(O) - h(x 0 ) < v < h( a) - h(x 0 ))

fh(ca)-h(x 0 ) (4-11)

h(O)-h(xo)

where

N(v; 0,1) -- e-v 2/2 (4-12)

Thus the probability density function for x on [0,1] is
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d

P^(ai) =- Prob(O < x < cIx - x0)
x da (4-13)

N(h() - h(x0); O,1)h'(a)

Note that in this case we obtain a formula for the error variance

M- (- x 0 )2Ix xo] = x0
2 Prob(v < h(O) - h(x0))

+ (1 - Xo)2 Prob(v > h(1) - h(xo))

o h'(a) 1)

exp - (h(a) - h(x d

In the sequel we develop a sequence of approximations to this quantity moti-

vated by our desire to develop methods that can be applied to more complex

problems.

The Cramer-Rao Bound and the Ambiguity Function

For this problem

p(ylx) - exp - (y - h(x)( 4-14)

and it is a straightforward computation to verify that the Cramer-Rao Bound is

-1
-- ~2 In P(YlX 0)  1...

CRB (x 0) "-E 2 x " 0 " dhx) 2d  (4-15)

( dx )
The ambiguity function in this problem is

A(x 1 ,x 2 ) - h(x1)h(x2) (4-16)
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Note that

E (x)x0" xj 0 A(xx 0  A(x,x) (4-17)

coy [.(x 1),i(x2 )] - A(xlX 2 ) (4-18)

and

- 2 A(x,x) - - A(x,x) - CRB (x0) (4-19)

x x 0

Thus the Cramer-Rao bound is seen to depend explicitly on the curvature of

E[Z(x)Ix - x0] at the location of its peak, i.e., at x = x0.

4.3 CONVERGENCE ANALYSIS

We now construct a sequence of approximations indexed by the integer N.

Essentially what we will do is to divide the interval [0,11 into subintervals,

most of which will be of length 1/N. There will, however, be one interval

centered at the true value x0 that will be larger. Specifically, let

IcN - x 0  , x 0 + ) 10,11 (4-20)

Assuming that N is large enough so that x0 - 1'JI > 0, define

ILI1 N - 0} (4-21a)

1 0, 1,1N
ILiN + I N A 0  - , i 0, 1, ... , L(N)

(4-21b)

where a A b indicates minimum of a and b and where
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L(N) - Nx 0 - NF- 1 (4-21c)

I (Here z-l is the smallest integer greater than or equal z). Note that

L(N) " O(N). Similarly assuming that x0 + I/%JN-< 1, define

IR,-I N = {1} (4-22a)

IRiN [ 0 + 1 V N- ,-, - 1, R(N)

(4-22b)

where a V b indicates maximum of a and b and where

R(N) = FN- 1 - Nx0 - %FN-] (4-22c)

Again R(N) - O(N). What we have done is to partition [0,1] into disjoint

sets. There is one, larger central set I.N, and the two endpoints IL,_IN and

IR,-iN. The remaining sets to the left of IcN are of the form (i/N, i+I/N]

except for the one bordering on IcN which is clipped off so that it doesn't

overlap. Similarly the sets to the right of IcN are of the form [i/N, i+1/N)

m except for the one bordering on IcN which is clipped off so that it doesn't

overlap.

Since these sets don't overlap, we have the following equality

E[(i -,) 2 Ic = - ? E[(x- x 0 )
21x = x0, XCILIN]Pr(xEILiNIx x 0)

R(N)
+ E[(x- xo) 2 1x = x 0 , CIRN]Pr(icIRilx - xo)

i=-

+ E[( - x)21x _ xO, xclcN]pr(xCIcNix x0 )

-(4-23)
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Our approximate method for evaluating the left-hand side of Eq. 4-23 is based

on obtaining approximations for each of the terms on the right-hand side. To

do this, we proceed by defining the following discrete set of points

6iN - center point of J' ,N 1 0, .. ,L(N)

XO (4-24)

Yi - center point Of IR ,iN 1 0, .. ,R(N)

Note that

r 0 2N

Si+1 N - SiN . i - 0, .. ,L(N) -2

N

6i+l N - 6iN M O (NI) i - L(N) -1

IIXO - SLNN-

(4-25)

YR(N) N - 2c0 M 0 (~

YiN - YiIN - 1 ) i - 0,N 1.,RN
Yi+1 N

N

4-8
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Consider the hypothesis testing problem in which we assume that we know

that x takes on one of the finite set of values in Eq. 4-24, and suppose that

Bwe use the maximum likelihood criterion for choosing our estimate from this

finite set. Let

PtiN(x0) Prob(choose 6iNjx = x 0 ) , i -1, ... , L(N) (4-26a)

PcN(x0) = Prob(choose x 0Ix = x0 ) (4-26b)

PRiN(x 0) 0 Prob(choose yiNx x0) , i = -1, ... , R(N) (4-26c)

Then our approximation to Eq. 4-23 is

r"E XO2 0 L(N)

E[(x - Xo) 2 1x = x] - (6 N - X0 ) 2 LIN(X0 )

R(N)
+ iN - x0)2 P ON(X0)  (4-27)

+ CRB (xo)P(N) pcN(xo) j(xO)

where

ElI dh
P(N) = E 2 Ih1 - - (xo)j (4-28)Edx

- We now proceed to estimate the errors in the various terms and to show that

Eq. 4-27 converges to E[(x - x 0 ) 2 1x = x0 ] as N +
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The Terms E[(x - Xo)2 x Xo, XeIL,iNI and E[(x - xo)21x Xo, xc iN]

iiE Note first that

E[(x - x 0 ) 2 1x x0, XCILIN] (& 1 N - x 0 )2 (4-29a)

E[(i - xo) 2 1x - x0 , xEIR,_.N
] 

l (_..1N]N - xo)2 (4-29b)

Furthermore for i > 0

E[(x - xo) 2 1x - Xo, IcI.iN]
(4-30)

-f (a - x0)2 p^(ajx =x0, cIUiN ) da

|~ , tN x

where

p(aIx - x0 , XCILi N ) p;(alx - x0) (4-31)

4 N p;(aix - x o )
LiN

and p(aix - x0) is given in Eq. 4-13. We now see that the integral in Eq.

4-30 is sufficiently smooth over the entire interval, so that we may approxi-

mate it as

D (iN - xO)2 px(SiNlx - x0, CILiN) x Length(ILiN) (4-32)

The error introduced in this approximation 
is 0 ) To see this, examine

Fig. 4-1.
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N

1Li R-1990

Figure 4-1. 0 Approximation Error

The integral to be evaluated is the area undex the solid curve, while Eq.

4-32 equals the area under the dotted curve. Let

dp

K - sup sup - (a - xo) 2 p^(aIx x 0  XCILiN])

i a da x 0

It is easy to see that K < - and that the magnitude of the difference between

the areas under the solid and dashed curves in Fig. 4-1 is bounded above by

K 2Lh,~" K E  (I~iN) 2

Length(IL

2 e."

which, from Eq. 4-21 is 0 ). Finally we note that by the same type of

argument

1 mf p P: ( x = x0, XCILiN) da

ILi (4-33)

- P; (6iNlx - xO, XCIUN) x Length(ILlN) + O

4-11
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Combining Eqs. 4-30 through 4-33 we see that

o E[(x - x0)21x = xo, XCIL j] = (6iN - x0 )
2 + 0  '4-

i 0 0, ... , L(N)

In an analogous fashion we can show that

E[(x - x0 )
2 1x - x0, ;CIRiN] = ( iN - x,0 )

2 + (NJ (4-35)

i 0 0, ... , R(N)

The Term E[(; - x )2 1x = of' ;ZIcNI

Substituting Eq. 4-3 into Eq. 4-6 we obtain

1 I dh )2 2 dhI(x) " - h(x0) 2 - (h - 20] -0 (x0)[x - x 0 ]R(x- xO)

2 2 dx dx

- - + v h(x0 ) + dh[x - x0] + v R(X - x0)

2 [R~x- x0)] xdx

(4-36)

Assuming that ;CIcN we have that

dt(x) (dh 2 dh
0 dx dx (X0) [x x 0] + v dx 0) + A1(x) + VA2(X)

(4-37)

where

A1(x) dh (x 0 )[R( - x0) + - x0) d -
dx dx x,)]

Rd (4-38a)- R(x - x0) d x- ~
d

A2(x) = - R(x - x (4-38b)4dx-

4-12
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and

sup 1,x 1 = 0 (4-39a)

sup , 2) =o o (4-39b)
cj N NN

c

From Eq. 4-37 we see that

- x0  [ (x) v + [h (x0 )][ ( ) + VA (4-40)

Also we are assuming

X01- X < o

Combining Eqs. 4-39 and Eq. 4-40 we can deduce that the implied constraint

on v is

lvI < (x0) + 0 ) (4-41)
q'JI dx

Thus

E x F0 ;Ic - E [2 1 V I dh (x) + o

SP( N(4-42)

= P(N) + 0N5

The 0 comes from the 0 - term in Eq. 4-41 which implies that the

actual limits on v can differ by a term of order 11N. Thus the probability

mass in the interval between

4-13
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1 dh (x o )

and the right-hand side of Eq. 4-41 is O0(- and

Ix. (*xo) +o 0 - x o  -, N31

(4-43)

Finally, using Eqs. 4-39, 4-40, and 4-42 we obtain

E[ x- x0)21x = x0, xZCIN] P() Ld (x)]-2 +

V (4-44)

The Probabilities in Eq. 4-23

Under the assumption that x is one of the points in Eq. 4-23, the maximum

K .likelihood decision rule is to choose x corresponding to the largest among the

values £(x) evaluated at these points. Note next that under the assumption

that x0! x

(-(iN) h(xo)[h(6i+IN) - h(.iN)]

- h(6i+N)2 - h(6iN)] (4-45)

+ V{h(6i+N) - h(6iN)]

Thus using Eq. 4-2b we see that the sign of X(i+1N) - t(6iN) is the same as

the sign of

4-14
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h(x0) - ~ h(Si+IN) + h(diN)] + V A -PTiN + V (4-46a)

Similarly the signs of X(x0)- 1(6L(N)N), t(YR(N)N) -(x0), and t(yiN)

- £(ji+iN) are the same as the signs of

h(x 0 ) - [ h(x 0 ) + h(6L(N)N) + v A -UclN + v (4-46b)

h(x 0 ) - 1 [h(YR(N)N) + h(x 0 ) + V A -1Jc2 N + v (4-46c)

h(x0 ) - 1 [h(yiN) + h(yi+lN) + v A -RiN + v (4-46d)

Again using Eq. 4-2b) we have that

U L,_N < PL, N < ... < PL,L(N)I N < Vc N < Pc2 N < OR,R(N)- IN < ... < UR- N  -

(4-46e)

and from this we can deduce that the quantities in Eq. 4-46 are as follows:

pL,_IN(xO) - Prob(v < UL,-IN) (4-47a)

PL,iN(xO) - Prob(pL,iiN < v < UL,i N ) (4-47b)

i - 0, 1, ..., L(N) - 1

PLL(N)N(x0) - Prob(PL,L(N)_.IN < v < pcN) (4-47c)

PCN(x0) - Prob(jclN < v < )Jc2N) (4-47d)

PR,R(N) N - Prob(Pc2N < v < PR,R(N)_iN) (4-47e)
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PR,iN = Prob(pR,iN < v < pRi_N) (4-47f)

i = 0, ..., R(N) - I

PR, = = Prob(v > pR,_IN) (4-47g)

We now compare these terms to the terms to which they correspond in Eq.

4-23. First, note that 0

pL _IN(xO) = Prob(choose 0Ix -x0) = Prob v < 1 [h ( + h(0) - h(x0 )

(4-48a) 0

while

Prob(c1L,_.lNIx - x0 ) Prob(v < h(0) - h(x0 )) (4-48b)

Given Eq. 4-2b we have

(1's
Prob(xeIL,-1Nlx x0 ) pL,-1 N + 0 - (4-49)

Similarly

Prob(xcIR,-iNix = x )-f pR,-IN + 0Q (4-50)

Next note that for i = 0, 1, ..., L(N) - 2

N -1 +h( )] h(x0 ) 0

pi,iN(xo) f N(v; 0,1)dv- f N(v; 0,1) dv

IJL,i-I N 1 [(i+i/2) + h (i12]-h(x,)

(4-51)

4-16
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while from Eq. 4-11 for i - 0, 1, ... , L(N) - 2

h ( 1-h(x) 0(N)

Prob(XCILiNIx = x 0 ) f N(v; 0,1) dv (4-52)

h ( i ) -h(x ,)
N0

Using Eq. 4-3 (with a = i/N) we have that

I [hi +1/2) + h( 1/2] h( ) + 0 ( (4-53)

2 N N N N

I [h (i +3/2) + h ~ ] /2 h( i + +o0(. (4-53b)

Thus

Prob( EILiNjx I xO) p ,iN(xo) + o , i 0, 1, L(N) - 2

(4-54)

Similarly

Prob( EIRiNjx x0 ) R,iN(x0 ) + 0 -2 1 0, 1, ... , R(N) - 2

(4-55)

Now for i - L(N) - 1

-[h (LNN)+h (N)/2] h(xo)
2• N

PLL(N)-IN(x0 ) f N(v; 0,1) dv (4-56a)

4-17
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while

p ~h (- )-hx)

Prob(xEILL(N)..lNIx =x 0 ) N( v; 0,1) dv (4-56b)

mh (L(N)-1) -h(x 0 )

and furthermore

6L(N) N I L(N + x 0 (4-57)

Using Eq. 4-3 we have

1~ lh6L(N) N + hi L() / h(-jN) +j- ~ (4-58)
2 N" NNJ 0(NN,

so that

*Prob(xeIL,L(N)...lNIx x x0) =PL,L(N)-1N(x,) + 0(-9

and similarly

Prob(xCIR,R(N)..1Njx -x 0 ) =PR,R(N)-1(x0 ) + 0(4-60)

Next we have that

I [h(6L(N)N)+ h (LN 1/2]()

2. N

4-18
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and

h(x 0  I )-~ 0

Prob(xeILL(N)N)Ix =x 0 ) =fN(v; 0,I) dv (4-62)

b()-h(x,)

A similar argument to the preceding ones yields

Prob(xEILL(N)NI x 0) PL,L(N)N(x 0 ) +0( 1 ) (4-63)

and similarly

Prob(xEIR,R(N )Nix -x)= PR,R(N)N(xo) +0 ( 1(4-64)
Finally

PC N(x0) =f N(v; 0,1) dv (4-65)

and

h ( x .0 + -h(x0 )

Prob(xcIcNlxex0 ) f N(v; 0,1) dv (4-66)
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Using Eq. 4-57, the corresponding expression for YR(N)N and Eq. 4-3 we find

that

2 h(x0) + h(6L(N)N - h (x I- 0 (4-67)

1 0 I ' (-Lh(x0) + h(YR(N)N - h x 0 + + 0 (4-68)

and thus

Prob( elcNlx Xo) pcSN(xo) + 0 (4-69)

Combining the estimates 4-35, 4-44, 4-49, 4-50, 4-54, 4-55, 4-59, 4-60,

4-63, 4-64, 4-69, and the facts that P(N) =  0 and

E( - xo) 2 1x - xO, CIL(N)N] - o(! (4-70a)

* E[(x - x 0)
2 1x - xo, CIR(N)N] . O( (4-70b)

we conclude that

E[(x - xo) 2 1xo - (xo) + 0 (4-71)

where i(xo) is the approximation in Eq. 4-27.

4-20
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4.4 CONCLUSION

In this section we have studied the ambiguity analysis method of approx-

imating mean square estimation error for a simple nonlinear parameter estima-

tion problem given by Eq. 4-1. We saw that the method outlined in subsection

4.1 converges to the true mean square error of the maximum likelihood estima-

m tor and that the error is inversely proportional to the number of regions used

to subdivide the parameter space. Note that the central region R 0 for which

the Cramer-Rao bound was used to estimate E{(x 0-x)
2 1; 01} was proportional

to (I--l) in size. The remaining regions were proportional to N- 1 in size.

For large N this means that N is of the order of the number n of regions

subdividing the parameter space. Thus, the approximation error 0 - is

also 0
n

Further work is required to determine how the magnitude of the measure-

ment noise (or equivalently, the signal-to-noise ratio) enters into the approx-KP
imation error. This result will clarify how large the number of regions needs

to be for a given signal-to-noise ratio. The convergence analysis also needs

to be extended to the general case of vector states and measurements and toU
the case where a measurement process is observed. The order of the approxima-

tion error is expected to remain the same in these generalizations but a more

precise idea of the size of this error would help us understand the computa-

tional feasibility of applying the ambiguity analysis method to analyze the

performance of complex estimation problems.

4-21
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IS

SECTION 5

CONCLUDING REMARKS

5 . 1 GENERAL SUMMARY

The research described in this report has investigated methods for pre-

dicting performance in passive tracking problems. Our objective has been to

develop performance prediction methods that are computationally efficient,

applicable to realistic passive tracking models, and accurate. In our pre-

vious work [1] we developed a Cramer-Rao method to obtain a method that was

computationally efficient and applicable to a large class of mathematical

models. In Section 2 of this report we have shown that this method is easy

to apply to more realistic models than the ones used in [1]. Specifically,
*p

we have used the method to study the effect of uncertain, unstable source

frequency and the effect of the presence of a broadband source component on

tracking accuracy.m
In some nonlinear estimation problems of low signal-to-noise ratio,

Cramer-Rao methods may predict performance much better than the optimal pro-

cessing algorithm can actually achieve. This disadvantage of Cramer-Rao meth-
I

ods motivated us to investigate performance prediction methods which would

be more accurate when the signal-to-noise ratio was low, but which are still

efficiently computable for a large class of realistic models. Sections 3 and
S

4 focused on this problem.

5-
5-1
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Section 3 investigated an analytical (i.e., not requiring simulation)

method based on rate distortion theory [41. This method shows great promise

I 5 because it is efficient to compute for a large class of nonlinear problems

and it is better than the Cramer-Rao method when signal-to-noise ratio is

low. However, the method requires further development to make it applicable

to realistic dynamic problems.

Section 5 investigated a numerical method of performance prediction

often described as ambiguity analysis 171,[151. This method is essentially

based on numerical computations rather than on analytical formulas. The

method can give an accurate performance prediction provided sufficient com-

putational resources are available. Our investigation studied the relation-

|I ship between prediction accuracy and computational complexity for this method.

Further work remains to determine the precise effect of signal-to-noise ratio

on the relationship between prediction accuracy and computational complexity.

5.2 CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY INSTABILITY AND
BROADBAND SIGNALS

The method developed in [11 was used to study two effects: the effect

i I of an initially uncertain and randomly unstable source frequency, and the

effect of a broadband component of the source frequency. The random fre-

quency was parameterized by two variables, initial root-mean-square uncer-

tainty and rate of variation. The rate of variation (studied for .01 to 1.0

Hz/mn) appeared to have negligible effect on both position and velocity

tracking error. Initial uncertainty had little effect on position tracking

p error, but it did have a significant effect on velocity tracking error. When

the initial source frequency uncertainty reaches I Hz, the initial velocity

|5.
5-2
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tracking error is not substantially reduced until the source passes through

the sonobuoy field. This indicates that initial uncertainty concerning source

frequency can make the velocity tracking performance sensitive to source- 0

sensor geometry (i.e., good velocity tracking will depend more crucially on

good geometry).

The broadband source component was modeled as a simple stationary first- 0

order Markov process. The bandwidth of this process was fixed at 200 Hz

and the ratio of broadband to narrowband power was varied from 10- 5 to i04 .

Increasing this ratio increases the total source power, and the position and

velocity tracking error decrease as a consequence. The decrease in tracking

error is comparable to the decrease in error with increased narrowband source

signal power studied in [1]. This indicates that broadband source energy is ,

comparable in value to narrowband source energy, and that the broadband com-

ponent of the source signal can be profitably exploited by an acoustic signal

processing system. 50

Many other realistic models can be analyzed using the methods of Section

2. However, before analyzing the performance of other realistic models of

passive acoustic tracking problems, we need to determine the degree of opti- 5

mism inherent in the performance prediction of Section 2. Sections 3 and 4

present one approach to doing this, namely by trying to develop more accurate

performance predictions with which to compare the methods of Section 2. It

is also desirable to compare these performance predictions to the performance

of actual algorithms. The methods of Section 2 suggest a processing algorithm

architecture that might realize the performance prediction in some cases (see

(I] for discussion).

5-3
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5.3 RATE DISTORTION PERFORMANCE ANALYSIS

In Section 3 we showed how to compute analytically rate distortion bounds

of mean square error for static nonlinear estimation problems with a Gaussian 0

distributed state vector and additive Gaussian noise. Specifically, we ob-

tained a lower bound of the mean square estimation error for any specified

component of the state vector. We showed that the rate distortion bound is B

asymptotically tighter than the Cramer-Rao bound in the limit of low signal-

to-noise ratio.

Based on these results we conclude that rate distortion offers a better 8

approximation of mean square performance in the low signal-to-noise regime

than the Cramer-Rao bound. Furthermore, our rate distortion bound requires

little, if any, more computation than the Cramer-Rao bound for the special 0

class of estimation problems of interest. Thus, the rate distortion bound

appears to complement the Cramer-Rao method in the nonlinear, low signal-

to-noise ratio cases where the latter bound is believed to give overly opti- B

mistic performance predictions.

In order to make the rate distortion bound useful for dynamic nonlinear

estimation problems of tracking, we must develop our current results to sim-

plify the computations for large dimensional state and measurement vectors and

to obtain recursively computable formulas for dynamic estimation problems.

p
5.4 AMBIGUITY PERFORMANCE ANALYSIS

In Section 4 we analyzed the mean square parameter estimation error of

the maximum likelihood method using the ambiguity analysis method. We showed

that this numerical method converges to the exact mean square error as the

5-4
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number of discretization regions increases, and the approximation error is

inversely proportional to the number of regions used to subdivide the param-

eter space.

Further work is required to determine how the signal-to-noise ratio quan-

titatively affects the approximation error. This result would clarify how

m large the number of discretization regions need to be for a given signal-to-

noise ratio. The convergence analysis also needs to be extended to the general

case of vector states and measurements and to the case where a measurement pro-

cess is observed. The order of the approximation error is expected to remain

the same in these generalizations, but a more precise idea of the size of this

error would help us understand the computational feasibility of applying the

ambiguity analysis method to estimation problems.

5-5
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